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Abstract: Zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and sodium hydroxide (NaOH) were dissolved in distilled water and

stirred for 30 min. The resulting solution was sonicated by an ultrasonic wave for 45 min. This solution was washed with

distilled water and ethanol after centrifugation; next, it was placed in an electric furnace at 200°C for 1 h under the flow

of Ar gas to obtain zinc oxide nanoparticle. A zinc oxide nanoparticle-(C60) fullerene nanowhisker composite was syn-

thesized using the zinc oxide nanoparticle solution, C60-saturated toluene, and isopropyl alcohol via the liquid-liquid inter-

facial precipitation method. The zinc oxide nanoparticle and zinc oxide nanoparticle-(C60) fullerene nanowhisker composite

were characterized using X-ray diffraction, scanning electron microscopy, and Raman spectroscopy, and they were used for

the catalytic degradation of methyl orange (MO) under ultraviolet (at 254 and 365 nm) and ultrasonic irradiation. In addi-

tion, the catalytic degradation of MO over the zinc oxide nanoparticle and zinc oxide nanoparticle-(C60) fullerene nanow-

hisker composite was evaluated using ultraviolet-visible spectroscopy. 
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Introduction

Organic dyes can cause vomiting, pain, hemorrhage, ulcer-

ation of skin and mucous membranes, and dermatitis.1 In

addition, the presence of large amounts of organic dyes in

wastewater can cause the toxic environment to aquatic organ-

isms, inhibit the penetration of sunlight, and reduce the rate

of photosynthesis.2 Therefore, the removal of organic dyes

from wastewater is imperative for preserving the natural

environment. MO is widely used as a coloring agent for the

detection of hydrogen gas in the food, leather, and pharma-

ceutical industries.3,4 Various physical (coagulation, reverse

osmosis, membrane filtration), chemical (reduction, oxida-

tion, ion exchange, complexometric), and biological (aerobic

and anaerobic) methods are used for removing MO from

wastewater.5 Among these methods, photocatalytic degrada-

tion is the most efficient approach for removing dyes and

other pollutants from wastewater. Photocatalytic degradation

converts organic dyes completely to H2O, CO2, and less or

nontoxic compounds without causing secondary pollution.6

Advanced oxidation processes are usually used for the deg-

radation of organic dyes in wastewater.7-10 These mechanisms

involve the formation of hydroxyl (·OH) and superoxide

(·O2
) radicals.11 Semiconductor metal oxides such as ZnO

can act as catalysts for the degradation of organic dyes in

wastewater.2

Zinc oxide is an n-type metal oxide semiconductor with a

wide band gap of 3.37 eV and a large exciting binding energy

of 60 meV at room temperature.12 Because of these prop-

erties, ZnO is used as antibacterial agents and in solar cells,

light emitting diodes, nano lasers, piezoelectric devices,

ultraviolet (UV) shielding materials, and gas sensors.7-9,13-15

However, in ZnO, the recombination rate of photo-gener-

ated electron-hole pairs is usually faster than the surface

redox reaction, which severely limits its practical use, espe-

cially in the photocatalytic degradation of organic com-†Corresponding author E-mail: kowb@syu.ac.kr; yeona@dankook.ac.kr
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pounds.2 Therefore, various studies have been carried out to

suppress the electron-hole pair recombination in ZnO in

order to improve the photocatalytic efficiency. The com-

monly used approaches for suppressing the electron-hole pair

recombination of ZnO include combining ZnO with other

semiconductors8-11,16,17 or carbon-based materials18-26 and

doping with metals27-34 and nonmetals.35-38

When combined with carbon nanotubes39,40 and carbon

nanofibers,41,42 ZnO shows excellent photocatalytic activity.

In particular, carbon-based nanomaterials act as an electron

acceptors. It acts as an electron transport materials in the pho-

tocatalytic degradation of organic dyes and facilitates the

migration of photo-generated electrons and suppressing the

charge recombination, thus enhances the lifetime of electron-

hole pairs and improves the photocatalytic efficiency of the

composite.43

(C60) Fullerene nanowhiskers are composed of single-crys-

tal (C60) fullerene, a typical carbon nanomaterial, and thin

needle-like fibers with a length less than 100 μm.44 These

nanowhiskers are used in many applications such as in chem-

ical sensors, solar cells, photosensors, and field-effect tran-

sistors.45-50 The nanowhiskers are prepared by the liquid–

liquid interfacial precipitation (LLIP) method.46

(C60) Fullerene nanowhiskers exhibit unique properties

such as high charge carrier mobility,51 optical transmittance,45

and higher Young’s modulus than that of the pristine (C60)

fullerene crystal.52 Owing to these unique properties, (C60)

fullerene nanowhiskers act as excellent electronic acceptors

and electron transport materials in hybrid nanocomposites.

Various efforts have been made to develop hybrid nano-

composites of semiconductor materials and (C60) fullerene

nanowhiskers with excellent nanocatalytic performance.53,54

In this study, we synthesized a zinc oxide nanoparticle-

(C60) fullerene nanowhisker nanocomposite from zinc oxide

nanoparticles using the LLIP method. 

The zinc oxide nanoparticle and zinc oxide nanoparticle-

(C60) fullerene nanowhisker composite were used to degrade

MO under UV (at 254 and 365 nm) and ultrasonic irradi-

ation. 

Experimental 

1. Materials 

(C60) Fullerene was obtained from Tokyo Chemical Indus-

try Co. Ltd. MO and hydrogen peroxide (H2O2, 30%, w/w)

were purchased from Daejung Chemicals. Zinc nitrate hexa-

hydrate (Zn(NO3)2∙6H2O), sodium hydroxide (NaOH), tolu-

ene (C7H8), ethanol (C2H5OH), and 2-propanol (C3H8O) were

supplied by Samchun Chemicals.

2. Instruments 

An electric furnace (Ajeon Heating Industry Co., Ltd.) was

used to heat the samples. The photocatalytic degradation of

MO was confirmed using ultraviolet-visible (UV-Vis) spec-

troscopy (Shimazu UV-1601 PC) under ultraviolet and ultra-

sonic radiation condition.  An ultraviolet lamp(8 W, 254 nm/

365 nm, 77202 Marne La Vallee-Cedex 1, France) was used

for irradiation of UV light. The ultrasonic radiation of 20

kHz frequency was generated using UGI1200 (Hanil Ultra-

sonic Co., Ltd.), equipped with a horn-type tip of 13 nm OD.

The crystal structures of the samples were analyzed using X-

ray diffraction (XRD) (Bruker, D8 Advance) at 40 kV and

40 mA. Raman spectroscopy (BWTEK, BWS465-532S) was

used to analyze the lattice vibrations of the sample. Scanning

electron microscopy (SEM) (JEOL, Ltd., JSM-6510) mea-

surements were carried out at an accelerating voltage of 10

kV to examine the surface morphologies of the samples.

3. Synthesis of zinc oxide nanoparticle

Zinc oxide nanoparticle was prepared by mixing 1 M zinc

nitrate hexahydrate (Zn(NO3)2·6H2O) and 10 M of sodium

hydroxide (NaOH) with 20 mL of distilled water followed

by stirring for 30 min. The resulting solution was subjected

to ultrasonic irradiation for 45 min. The mixture was then

washed with distilled water and ethanol by centrifugation and

placed in an electric furnace at 200°C for 1 h under the flow

of Ar gas to obtain zinc oxide nanoparticles. 

4. Preparation of the zinc oxide nanoparticle-(C60) fullerene

nanowhisker composite

The zinc oxide nanoparticle-(C60) fullerene nanowhisker

composite was prepared using the LLIP method by blending

the zinc oxide nanoparticle solution (~0.2 mg/mL), C60-sat-

urated toluene (~14 mg/mL), and isopropyl alcohol at a vol-

ume ratio of 1:14:75. The resulting solution was kept at 5℃

for 20 h.
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5. Catalytic degradation of MO over the zinc oxide

nanoparticle and zinc oxide nanoparticle-(C60) fullerene

nanowhisker composite

The catalytic activities of the zinc oxide nanoparticle and

zinc oxide nanoparticle-(C60) fullerene nanowhisker compos-

ite for the degradation of MO were evaluated. Stock MO

solutions were synthesized using 2 mM of MO powder. The

zinc oxide nanoparticle and zinc oxide nanoparticle-(C60)

fullerene nanowhisker composite (0.1 g/L) were used for the

photocatalytic degradation of a 4.2 × 102 mM MO solution

containing H2O2. The pH of the MO solution was maintained

at 5.7, H2O2 was used as an oxidizing reagent. The solution

was stirred for 30 min in the absence of light to attain an

adsorption-desorption equilibrium between the MO mole-

cules and the catalysts. 

The catalytic degradation process was monitored using

UV-Vis spectroscopy. The catalytic degradation of MO over

the zinc oxide nanoparticle and zinc oxide nanoparticle-(C60)

fullerene nanowhisker composite was carried out under UV

(at 254 and 365 nm) and ultrasonic irradiation.

Results and Discussion

1. Characterization of zinc oxide nanoparticle and zinc

oxide nanoparticle-(C60)fullerene nanowhisker composite

The crystal structures and crystallite sizes of the zinc oxide

nanoparticle and zinc oxide nanoparticle-(C60) fullerene

nanowhisker composite were examined using powder XRD.

The XRD patterns of the zinc oxide and zinc oxide nanopar-

ticle-(C60) fullerene nanowhisker composite are shown in

Figure 1. The composite showed peaks at 2θ = 10.74°,

17.71°, 20.69°, 28.02°, 30.79°, and 32.75° corresponding to

the (111), (220), (222), (420), (422), and (333) planes of (C60)

fullerene nanowhisker, respectively. On the other hand, the

peaks at 2θ = 31.77°, 34.42°, 36.26°, 47.54°, 56.61°, 62.86°,

67.39°, and 69.10° correspond to the (100), (002), (101),

(102), (210), (103), (212), and (201) planes of zinc oxide

nanoparticle, respectively (JCPDS card No.36-1451).55 The

XRD results indicated the successful preparation of the zinc

oxide nanoparticle and zinc oxide nanoparticle-(C60) fuller-

ene nanowhisker composite. The crystallite sizes of the syn-

thesized zinc oxide nanoparticle and zinc oxide nanoparticle-

(C60) fullerene nanowhisker composite were calculated using

the Scherrer formula as follows:

D = k·λ/β·cosθ

where D is the crystallite size, λ is the wavelength of Cu-

Kα radiation (λ = 0.154 nm), k is the Scherrer constant (taken

as 0.94), 2θ is the angle between the incident and scattered

X-rays, and β is the full width at half maximum. The average

crystallite size of the zinc oxide nanoparticle was found to

be approximately 21.04 nm (Table 1).

Figure 2 shows the morphologies of the zinc oxide nano-

particle and zinc oxide nanoparticle-(C60) fullerene nanow-

hisker composite photographed using SEM. The image of

SEM revealed that most of the synthesized zinc oxide

nanoparticle structure showed almost snow flower-like mor-

phology in Figure 2(a). In the zinc nanoparticle-(C60) fuller-

ene nanowhisker composite, with snow flower-like structure

and agglomerated zinc oxide nanoparticle were observed on

Figure 1. XRD pattern of (a) zinc oxide nanoparticle and (b) zinc

oxide nanoparticle-(C60) fullerene nanowhisker composite.

Table 1. Crystallite Size of Zinc Oxide Nanoparticle, as Estimated

Using the Scherrer Equation

Miller 

Indices 

(hkl)

Diffraction 

angle 2θ

(degree)

FWHM (β)

(degree)

Crystallite 

size

(nm)

(100) 31.77 0.373 23.14

(002) 34.42 0.295 29.46

(101) 36.26 0.400 21.84

(102) 47.54 0.477 19.02

(210) 56.61 0.529 17.82

(103) 62.86 0.493 19.73

(212) 67.39 0.535 18.65

(201) 69.10 0.540 18.67

Average 21.04
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the (C60) fullerene nanowhisker with a needle-like structure

in Figure 2(b).

The vibrational modes of the zinc oxide nanoparticle and

zinc oxide nanoparticle-(C60) fullerene nanowhisker compos-

Figure 2. SEM image of (a) zinc oxide nanoparticle and (b) zinc

oxide nanoparticle-(C60) fullerene nanowhisker composite.

Figure 3. Raman spectrum of (a) zinc oxide nanoparticle and (b)

zinc oxide nanoparticle-(C60) fullerene nanowhisker composite.

Figure 4. UV-vis spectra for catalytic degradation of MO using on

zinc oxide nanoparticle under UV light (a) at 254 nm, (b) 365 nm,

and (c) ultrasonic irradiation.
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ite were observed using Raman spectroscopy, as shown in

Figure 3.

The zinc oxide nanoparticle-(C60) fullerene nanowhisker

composite showed Hg(1), Ag(1), and Ag(2) Raman shifts at

263, 490, and 1460 cm1, respectively because of the pres-

ence of (C60) fullerene nanowhisker. A peak corresponding

to the E2h mode of the zinc oxide nanoparticle was observed

at 436 cm1.56 The peak shown at 430 cm1 can be seen as

the presence of zinc oxide nanoparticle because blue shift is

generated by the (C60) fullerene nanowhisker.

2. Catalytic degradation of MO with different conditions

using on zinc oxide nanoparticle and zinc oxide nano-

particle-(C60) fullerene  nanowhisker composite

The catalytic degradation rate of MO shows in the pres-

ence of zinc oxide nanoparticle under various conditions such

Figure 5. UV-vis spectra for catalytic degradation of MO using on

zinc oxide nanoparticle-(C60) fullerene nanowhisker composite

under UV light (a) at 254 nm, (b) 365 nm, and (c) ultrasonic

irradiation.

Figure 6. Kinetics study for degradation of MO using on (a) zinc

oxide nanoparticle and (b) Zinc oxide nanoparticle-(C60) fullerene

nanowhisker composite as a catalyst under UV irradiation at 254

nm, 365 nm, and ultrasonic irradiated condition.
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as UV and ultrasonic irradiation in Figure 4. The MO deg-

radation rate under various conditions decreased in the fol-

lowing order: 254 nm UV irradiation > 365 nm UV irradiation

> ultrasonic irradiation. 

Also, catalytic degradation rate of MO using on zinc oxide

nanoparticle-(C60) fullerene nanowhisker composite exhibits

in Figure 5. The tendency of MO degradation rate under var-

ious conditions in Figure 5 decreased similarly to zinc oxide

nanoparticle catalyst in the following order: 254 nm UV irra-

diation > 365 nm UV irradiation > ultrasonic irradiation.

3. Kinetics study for the degradation of MO over the zinc

oxide nanoparticle and zinc oxide nanoparticle-(C60)

fullerene nanowhisker composite as catalysts 

Figure 4 and 5 show the UV-Vis spectra for the catalytic

degradation of MO over the zinc oxide nanoparticle and zinc

oxide nanoparticle-(C60) fullerene nanowhisker composite as

catalysts. As can be observed from Figure 6, the R2 values

(coefficient of determination) for the pseudo first-order reac-

tion kinetics were 0.997, 0.995, and 0.989. The catalytic deg-

radation of MO was carried out under UV light (at 254 and

365 nm) and ultrasonic irradiation. The equation for the first-

order reaction kinetics is as follows (Figure 6):

(dC/dt) = k1C

where C is the initial azo dye concentration and k1 is the first-

order rate constant. The linear behavior of the curves indi-

cates that the catalytic degradation of MO over the catalysts

followed pseudo first-order kinetics.57

Conclusions

A zinc oxide nanoparticle-(C60) fullerene nanowhisker

composite was prepared via the LLIP method using a zinc

oxide nanoparticle solution and saturated (C60) fullerene in

toluene and isopropyl alcohol. The hybrid nanocomposite

was characterized using XRD, SEM, and Raman spectros-

copy. The zinc oxide nanoparticle and zinc oxide nanopar-

ticle-(C60) fullerene nanowhisker composite were used for

the catalytic degradation of MO under UV (254 and 365 nm)

and ultrasonic irradiation. The ZnO nanoparticle-(C60) fuller-

ene nanowhisker composite showed better catalytic activity

than the zinc oxide nanoparticle. The (C60) fullerene nanow-

hiskers in the composite acted as electron acceptors and elec-

tron transfer materials during the catalytic degradation of

MO, thereby improved the efficiency of the composite. The

MO degradation rate of the composite under various con-

ditions decreased in the following order: 254 nm UV irra-

diation > 365 nm UV irradiation > ultrasonic irradiation.

Overall, the zinc oxide nanoparticle-(C60) fullerene nanow-

hisker composite showed better catalytic degradation of MO

than the ZnO nanoparticles. In addition, the kinetics of the

catalytic degradation of MO over the hybrid catalyst fol-

lowed the pseudo-first-order reaction rate law.
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